|
|
@ -99,36 +99,39 @@ dofloat(Arg *arg) { |
|
|
|
|
|
|
|
/* This algorithm is based on a (M)aster area and a (S)tacking area. |
|
|
|
* It supports following arrangements: |
|
|
|
* MMMS MMMM SMMM |
|
|
|
* MMMS MMMM SMMM |
|
|
|
* MMMS SSSS SMMM |
|
|
|
* SSMMM MMMMM MMMSS |
|
|
|
* SSMMM SSSSS MMMSS |
|
|
|
*/ |
|
|
|
void |
|
|
|
dotile(Arg *arg) { |
|
|
|
int h, i, n, w; |
|
|
|
int i, n, stackw, stackh, tw, th; |
|
|
|
Client *c; |
|
|
|
|
|
|
|
for(n = 0, c = nexttiled(clients); c; c = nexttiled(c->next)) |
|
|
|
n++; |
|
|
|
|
|
|
|
if(isvertical) { |
|
|
|
if(stackpos == StackBottom) { |
|
|
|
w = sw; |
|
|
|
if(n > 1) |
|
|
|
h = (sh - bh) / (n - 1); |
|
|
|
else |
|
|
|
h = sh - bh; |
|
|
|
} |
|
|
|
else { |
|
|
|
w = sw - master; |
|
|
|
if(n > 1) |
|
|
|
h = (sh - bh) / (n - 1); |
|
|
|
else |
|
|
|
h = sh - bh; |
|
|
|
} |
|
|
|
if(stackpos == StackBottom) { |
|
|
|
stackw = sw; |
|
|
|
stackh = sh - bh - master; |
|
|
|
} |
|
|
|
else { |
|
|
|
stackw = sw - master; |
|
|
|
stackh = sh - bh; |
|
|
|
} |
|
|
|
else { /* horizontal stack */ |
|
|
|
|
|
|
|
if(isvertical) { |
|
|
|
tw = stackw; |
|
|
|
if(n > 1) |
|
|
|
th = stackh / (n - 1); |
|
|
|
else |
|
|
|
th = stackh; |
|
|
|
} |
|
|
|
else { |
|
|
|
th = stackh; |
|
|
|
if(n > 1) |
|
|
|
tw = stackw / (n - 1); |
|
|
|
else |
|
|
|
tw = stackw; |
|
|
|
} |
|
|
|
|
|
|
|
for(i = 0, c = clients; c; c = c->next) { |
|
|
@ -138,32 +141,59 @@ dotile(Arg *arg) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
c->ismax = False; |
|
|
|
if(n == 1) { |
|
|
|
if(n == 1) { /* only 1 window */ |
|
|
|
c->x = sx; |
|
|
|
c->y = sy + bh; |
|
|
|
c->w = sw - 2 * BORDERPX; |
|
|
|
c->h = sh - 2 * BORDERPX - bh; |
|
|
|
} |
|
|
|
else if(i == 0) { |
|
|
|
else if(i == 0) { /* master window */ |
|
|
|
c->x = sx; |
|
|
|
if(stackpos == StackLeft) |
|
|
|
c->x += master; |
|
|
|
c->y = sy + bh; |
|
|
|
c->w = master - 2 * BORDERPX; |
|
|
|
c->h = sh - 2 * BORDERPX - bh; |
|
|
|
if(isvertical) { |
|
|
|
c->w = master - 2 * BORDERPX; |
|
|
|
c->h = sh - 2 * BORDERPX - bh; |
|
|
|
} |
|
|
|
else { |
|
|
|
c->w = sw; |
|
|
|
c->h = master - 2 * BORDERPX; |
|
|
|
} |
|
|
|
} |
|
|
|
else if(h > bh) { |
|
|
|
c->x = sx + master; |
|
|
|
c->y = sy + (i - 1) * h + bh; |
|
|
|
c->w = w - 2 * BORDERPX; |
|
|
|
if(i + 1 == n) |
|
|
|
c->h = sh - c->y - 2 * BORDERPX; |
|
|
|
else if((isvertical && th > bh) || (!isvertical && tw > MINW)) { |
|
|
|
/* tile window */ |
|
|
|
c->x = sx; |
|
|
|
if(isvertical) |
|
|
|
c->y = sy + (i - 1) * th + bh; |
|
|
|
else |
|
|
|
c->h = h - 2 * BORDERPX; |
|
|
|
c->y = sy + bh; |
|
|
|
if(stackpos == StackRight) |
|
|
|
c->x += master; |
|
|
|
else if(stackpos == StackBottom) |
|
|
|
c->y += master; |
|
|
|
c->w = tw - 2 * BORDERPX; |
|
|
|
c->h = th - 2 * BORDERPX; |
|
|
|
if(i + 1 == n) { /* fixes for last tile to take up rest space */ |
|
|
|
if(isvertical) |
|
|
|
c->h = sh - c->y - 2 * BORDERPX; |
|
|
|
else { |
|
|
|
if(stackpos == StackLeft) |
|
|
|
c->w = master - c->x - 2 * BORDERPX; |
|
|
|
else |
|
|
|
c->w = sw - c->x - 2 * BORDERPX; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
else { /* fallback if h < bh */ |
|
|
|
c->x = sx + master; |
|
|
|
else { /* fallback if th < bh resp. tw < MINW */ |
|
|
|
c->x = sx; |
|
|
|
c->y = sy + bh; |
|
|
|
c->w = w - 2 * BORDERPX; |
|
|
|
c->h = sh - 2 * BORDERPX - bh; |
|
|
|
if(stackpos == StackRight) |
|
|
|
c->x += master; |
|
|
|
else if(stackpos == StackBottom) |
|
|
|
c->y += master; |
|
|
|
c->w = stackw - 2 * BORDERPX; |
|
|
|
c->h = stackh - 2 * BORDERPX; |
|
|
|
} |
|
|
|
resize(c, False, TopLeft); |
|
|
|
i++; |
|
|
@ -232,12 +262,12 @@ resizecol(Arg *arg) { |
|
|
|
return; |
|
|
|
|
|
|
|
if(sel == getnext(clients)) { |
|
|
|
if(master + arg->i > sw - 100 || master + arg->i < 100) |
|
|
|
if(master + arg->i > sw - MINW || master + arg->i < MINW) |
|
|
|
return; |
|
|
|
master += arg->i; |
|
|
|
} |
|
|
|
else { |
|
|
|
if(master - arg->i > sw - 100 || master - arg->i < 100) |
|
|
|
if(master - arg->i > sw - MINW || master - arg->i < MINW) |
|
|
|
return; |
|
|
|
master -= arg->i; |
|
|
|
} |
|
|
|