|
|
- # USAGE
- # python encode_faces.py --dataset dataset --encodings encodings.pickle
-
- # import the necessary packages
- from imutils import paths
- import face_recognition
- import argparse
- import pickle
- import cv2
- import os
-
- # construct the argument parser and parse the arguments
- ap = argparse.ArgumentParser()
- ap.add_argument("-i", "--dataset", required=True,
- help="path to input directory of faces + images")
- ap.add_argument("-e", "--encodings", required=True,
- help="path to serialized db of facial encodings")
- ap.add_argument("-d", "--detection-method", type=str, default="cnn",
- help="face detection model to use: either `hog` or `cnn`")
- args = vars(ap.parse_args())
-
- # grab the paths to the input images in our dataset
- print("[INFO] quantifying faces...")
- imagePaths = list(paths.list_images(args["dataset"]))
-
- # initialize the list of known encodings and known names
- knownEncodings = []
- knownNames = []
-
- # loop over the image paths
- for (i, imagePath) in enumerate(imagePaths):
- # extract the person name from the image path
- print("[INFO] processing image {}/{}".format(i + 1,
- len(imagePaths)))
- name = imagePath.split(os.path.sep)[-2]
-
- # load the input image and convert it from RGB (OpenCV ordering)
- # to dlib ordering (RGB)
- image = cv2.imread(imagePath)
- rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
-
- # detect the (x, y)-coordinates of the bounding boxes
- # corresponding to each face in the input image
- boxes = face_recognition.face_locations(rgb,
- model=args["detection_method"])
-
- # compute the facial embedding for the face
- encodings = face_recognition.face_encodings(rgb, boxes)
-
- # loop over the encodings
- for encoding in encodings:
- # add each encoding + name to our set of known names and
- # encodings
- knownEncodings.append(encoding)
- knownNames.append(name)
-
- # dump the facial encodings + names to disk
- print("[INFO] serializing encodings...")
- data = {"encodings": knownEncodings, "names": knownNames}
- f = open(args["encodings"], "wb")
- f.write(pickle.dumps(data))
- f.close()
|